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Abstract The atom-bond connectivity (ABC) index is a recently introduced
topological index defined as ABC(G) = ∑

uv∈E(G)

√
du+dv−2
dudv

, where du and dv are the
degrees of the vertices u and v in the graph G. We determine the unique cactuswith maximum ABC index among cacti with n vertices, and the unique cacti withmaximum ABC index among cacti with n vertices and r cycles and among cactiwith n vertices and k pendent vertices, respectively, where 0 ≤ r ≤ b n−12 c and
0 ≤ k ≤ n − 1.
Keywords Atom-bond connectivity index; cacti
AMS subject classifications 05C18; 05C35; 05C50

1 Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). For u ∈ V (G), N(u)
denotes the set of neighbors of u in G, and the degree of u is du = |N(u)|. The atom-bond
connectivity (ABC) index of G is defined as [3]

ABC(G) = ∑
uv∈E(G)

√
du +dv−2

dudv
.
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58 Jianping Li
The ABC index displays an excellent correlation with the heat of information of alkanes
[3, 2]. Furtula et al. [4] determined the minimum and maximum values of the ABC index
for molecular trees (trees with maximum degree at most four) and showed that the star is
the unique tree with the maximum ABC index when the number of vertices is given. Many
other results of ABC index have been established [6, 7, 1].

A cactus is a connected graph in which any two cycles have at most one vertex in
common. Lu et al. [5] determined the unique cactus with minimum Randić index among
cacti with n vertices and r cycles. In this paper, we determine the unique cactus with
maximum ABC index among cacti with n vertices, and the unique cacti with maximum
ABC index among cacti with n vertices and r cycles and among cacti with n vertices and k
pendent vertices, respectively, where 0≤ r ≤ b n−1

2 c and 0≤ k ≤ n−1.

2 The maximum ABC index of cacti with n vertices

For 0≤ r ≤ b n−1
2 c, let C(n,r) be the set of cacti with n vertices and r cycles, and C0(n,r)

the cactus obtained from r triangles with a common vertex by attaching n−2r−1 pendent
vertices to the common vertex. Note that C(n,0) and C(n,1) are trees and unicyclic graphs,
respectively.

Lemma 1 [4] Let G ∈ C(n,0), n≥ 2, then

ABC(G)≤
√

(n−1)(n−2)

with equality if and only if G∼=C0(n,0).

Lemma 2 [6] Let G ∈ C(n,1), n≥ 3, then

ABC(G)≤ (n−3)

√
n−2
n−1

+
3√
2

with equality if and only if G∼=C0(n,1).

Lemma 3 [7] Let f (x,y) =
√

x+y−2
xy =

√
1
x +

1
y −

2
xy , where x,y≥ 1. If y≥ 2 is fixed, then

f (x,y) is decreasing for x.

The following lemma is obvious.

Lemma 4 Let x be a positive integer. Denote f (x) =
√

x−1
x . Then f (x) is increasing in x.
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On the ABC index of cacti 59
Note that for a vertex v of a simple graph G on n vertices,

√
dv−1

dv
≤
√

n−2
n−1 with equality

if and only if dv = n−1. This fact will be used in our proof.
Let

g(n,r) =
3r√

2
+(n−2r−1)

√
n−2
n−1

.

Theorem 1 Let G ∈ C(n,r), where 0≤ r ≤ b n−1
2 c. Then

ABC(G)≤ g(n,r)

with equality if and only if G∼=C0(n,r).

Proof. We will prove the result by induction on n and r. If r = 0,1, then the theorem is true
by Lemma 1 and Lemma 2. Suppose that r ≥ 2 and then n≥ 5. If n = 5, then the theorem
holds trivially as there is only one graph in C(5,2).

Suppose that n≥ 6, r ≥ 2. Let G ∈ C(n,r) and δ(G) be the minimum degree of G. By
the definition of a cactus, δ(G) = 1 or 2.

Case 1. δ(G) = 1. Let xy ∈ E(G) with dy = 1. Let N(x)\{y} = {x1,x2, . . . ,xd−1}, where
d = dx. Obviously, d ≥ 2. Suppose without loss of generality that dx1 = dx2 = · · ·= dxp−1 =

1 and dxi ≥ 2 for p≤ i≤ d−1, where p≥ 1. Set G′ = G−y−x1−x2−·· ·−xp−1 (if p = 1,
then G′ = G− y). Obviously, G′ ∈ C(n− p,r). Denote dxi = di for p ≤ i ≤ d−1. By the
induction assumption,

ABC(G′)≤ g(n− p,r)

with equality if and only if G′ ∼=C0(n− p,r). Now by Lemma 3 and Lemma 4, we have

ABC(G) = ABC(G′)+ p

√
d−1

d
+

d−1

∑
i=p

(√
d +di−2

ddi
−
√

(d− p)+di−2
(d− p)di

)

≤ g(n− p,r)+ p

√
d−1

d

≤ g(n,r)+(n− p−2r−1)

√
n− p−2
n− p−1

− (n−2r−1)

√
n−2
n−1

+ p

√
n−2
n−1

= g(n,r)+(n− p−2r−1)
(√

n− p−2
n− p−1

−
√

n−2
n−1

)

≤ g(n,r),

with equalities if and only if G′ ∼= C0(n− p,r), d = n− 1, and 2r = n− p− 1, i.e., G ∼=
C0(n,r).

Case 2. δ(G) = 2. Then there exists an edge vw ∈ E(G) such that dv = dw = 2. Let u be
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60 Jianping Li
the neighbor of v different from w.

Subcase 2.1. uw 6∈ E(G). Let G′ = G− v + uw. Obviously, G′ ∈ C(n− 1,r). By the
induction assumption, ABC(G′)≤ g(n−1,r). Then

ABC(G) = ABC(G′)+
1√
2
≤ g(n−1,r)+

1√
2

= g(n,r)+(n−2r−1)
(√

n−3
n−2

−
√

n−2
n−1

)
+

1√
2
−
√

n−3
n−2

< g(n,r).

Subcase 2.2. uw ∈ E(G). Denote du = k, then k ≥ 3; Otherwise G is not connected. Let
G′ = G−v−w. Obviously, G′ ∈C(n−2,r−1). Denote N(u)\{v,w}= {u1,u2, . . . ,uk−2}
and dui = ki for 1≤ i≤ k−2. By the induction assumption,

ABC(G′)≤ g(n−2,r−1)

with equality if and only if G′ ∼=C0(n−2,r−1). Now by Lemmas 3 and 4, we have

ABC(G) = ABC(G′)+
3√
2
+

k−2

∑
i=1

(√
k+ ki−2

kki
−
√

(k−2)+ ki−2
(k−2)ki

)

≤ g(n−2,r−1)+
3√
2

= g(n,r)+(n−2r−1)
(√

n−4
n−3

−
√

n−2
n−1

)

≤ g(n,r),

with equalities if and only if G′ ∼= C0(n− 2,r− 1), d = n− 1, and 2r = n− 1, i.e., G ∼=
C0(n,r).

By combining Case 1 and Case 2, the result follows. �

Theorem 2 Let G be a cactus with n≥ 3 vertices. Then

ABC(G)≤





3n−3
4

√
2 if n is odd,

3n−6
4

√
2+

√
n−2
n−1

if n is even,

with equality if and only if G∼=C0(n,b n−1
2 c).

Proof. Let r be the number of cycles of G. Then 0≤ r≤ b n−1
2 c. By Theorem 1, ABC(G)≤

g(n,r) with equality if and only if G∼=C0(n,r). Note that

∂g(n,r)
∂ r

=
3√
2
−2

√
n−2
n−1

> 0.
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On the ABC index of cacti 61
Then g(n,r) is strictly increasing for 0 ≤ r ≤ b n−1

2 c. Thus ABC(G) ≤ g(n,b n−1
2 c) with

equality if and only if G∼=C0(n,r) with r = b n−1
2 c. It is easily seen that

g
(

n,
⌊n−1

2

⌋)
=





3n−3
4

√
2 if n is odd,

3n−6
4

√
2+

√
n−2
n−1

if n is even.

The result follows. �

Note that C0(n, n−2
2 ) has a perfect matching for even n. Thus we have that if G is a

cactus with a perfect matching on n ≥ 4 vertices, then ABC(G) ≤ 3n−6
4

√
2+

√
n−2
n−1 with

equality if and only if G∼=C0(n, n−2
2 ).

3 The maximum ABC index of cacti with k pendents

For 0≤ k≤ n−1, let C(n,k) be the set of cacti with n vertices and k pendents, and H0(n,k)
the cactus obtained by adding n−k−2

2 independent edges to the star Sn−1 and then inserting
a vertex of degree 2 in one of those independent edges if n−k is even, and by adding n−k−1

2
independent edges to the star Sn if n− k is odd. Let

ϕ(n,k) =





n− k−1
2

3√
2
+ k

√
n−2
n−1

if n− k is odd,

n− k−2
2

3√
2
+

1√
2
+ k

√
n−3
n−2

if n− k is even.

Lemma 5 Let n≥ 3 and 0≤ k ≤ n−2, then

ϕ(n−1,k)+
1√
2
≤ ϕ(n,k)

with equality if and only if n− k is even.

Proof. If n− k is even, then (n−1)− k is odd and we have

ϕ(n−1,k)+
1√
2
=

(n−1)− k−1
2

3√
2
+ k

√
n−3
n−2

+
1√
2

=
n− k−2

2
3√
2
+

1√
2
+ k

√
n−3
n−2

= ϕ(n,k).

International Journal of Graph Theory and its Applications 1 (2015) 57–66



62 Jianping Li
If n− k is odd, then (n−1)− k is even, and for n≥ 4 we have

ϕ(n−1,k)+
1√
2
=

n− k−1
2

3√
2
+ k

√
n−4
n−3

− 1√
2

= ϕ(n,k)+ k
(√

n−4
n−3

−
√

n−2
n−1

)
− 1√

2
< ϕ(n,k).

The case n = 3, k = 0 also holds. The result follows. �

Lemma 6 Let a and b be two integers with 3 ≤ a ≤ b and a+ b = n. Let f (a,b) =

(a−1)
√

a−1
a +

√
a+b−2

ab +(b−1)
√

b−1
b . Then f (a,b)< f (2,n−2).

Proof. If a = b, then n is even. By direct calculation, it is easily seen that f ( n
2 ,

n
2 ) <

f (2,n−2).
Suppose that a< b. Then it suffices to show that f (a,b)< f (a−1,b+1). For 3≤ x< n

2 ,

let l(x) = (x− 1)
√

x−1
x +

√
n−2

x(n−x) + (n− x− 1)
√

n−x−1
n−x and h(x) = 2x+1

2x

√
x−1

x . Then

h′(x) = 1
2x2

(
−
√

x−1
x + 1+2x

2x

√
x

x−1

)
> 0, and thus l′(x) = 2x+1

2x

√
x−1

x −
2(n−x)+1

2(n−x)

√
n−x−1

n−x −
√

n−2
2

n−2x
(nx−x2)3/2 < h(x)−h(n−x)< 0, implying that l(x)< l(x−1). Thus we have f (a,b)<

f (a−1,b+1). �

Lemma 7 Let G ∈ C(n,0). Then ABC(G) ≤ ϕ(n,0) with equality if and only if G ∼=
H0(n,0).

Proof. We will prove the result by induction on n. Since G has no pendent vertices, n≥ 3.
If n = 3,4, then the theorem holds trivially as there is only one graph Cn in C(3,0) and
C(4,0). If n = 5, then G = C5 or H0(5,0), and the theorem holds because it is easy to
check that ABC(C5) < ϕ(5,0) = ABC(H0(5,0)). If n = 6, then there are two graphs in
C(n,k)\H0(6,0), one is the graph obtained from two vertex-disjoint triangles by adding an
edge with ABC index 6√

2
+ 2

3 , the other graph C6 with ABC index 6√
2
, and both are smaller

than ϕ(6,0). Thus the result holds for n = 3,4,5,6.
Suppose n ≥ 7 and the result holds for cacti with no pendent vertices for which the

number of vertices is at most n− 1. Let G ∈ C(n,0). Then there is an edge w1w2 ∈ E(G)

such that dw1 = dw2 = 2. Let w3 be the neighbor of w1 different from w2.

Case 1. w2w3 6∈ E(G). Let G′ = G−w1 +w2w3. Obviously, G′ ∈ C(n− 1,0). By the
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On the ABC index of cacti 63
induction assumption and Lemma 5, we have

ABC(G) = ABC(G′)+
1√
2
≤ ϕ(n−1,0)+

1√
2
≤ ϕ(n,0),

with equality if and only if G′ ∼= H0(n−1,0) and n is even, i.e., G∼= H0(n,0) for even n.

Case 2. w2w3 ∈ E(G). Denote dw3 = t. Then t ≥ 3.

Subcase 2.1. t ≥ 4. Let G′ = G−w1−w2. Obviously, G′ ∈ C(n− 2,0). Denote N(w3) \
{w1,w2}= {u1,u2, . . . ,ut−2} and dui = ti for 1≤ i≤ t−2. Note that n−2 and n have the
same parity. By the induction assumption and Lemma 3, we have

ABC(G) = ABC(G′)+
3√
2
+

t−2

∑
i=1

(√
t + ti−2

tti
−
√

(t−2)+ ti−2
(t−2)ti

)

≤ ϕ(n−2,0)+
3√
2

≤





n−2−1
2

3√
2
+

3√
2
= ϕ(n,0) if n is odd,

n−2−2
2

3√
2
+

1√
2
+

3√
2
= ϕ(n,0) if n is even,

with equality if and only if G′ ∼= H0(n−2,0) and ti = 2 for 1≤ i≤ t−2, i.e., G∼= H0(n,0).

Subcase 2.2. t = 3. Then G has a triangle C = w1w2w3 with dw1 = dw2 = 2 and dw3 = 3.
In the following, we will prove that ABC(G) < ϕ(n,0) for this subcase by contradiction.
Let G be a counterexample such that n is as small as possible. Then ABC(G) ≥ ϕ(n,0).
Let z be the neighbor of w3 different from w1 and w2. Suppose that dz ≥ 3. Let N(z) =
{w3,z2, . . . ,zd′}, where d′ = dz. Let G′ = G−{w1,w2,w3} and denote dzi = d′i . Obviously,
G′ ∈ C(n−3,0). Combining the choice of G and the conclusion of the above subcase, we
have ABC(G′)≤ ϕ(n−3,0). Hence

ABC(G) = ABC(G′)+
3√
2
+

√
d′+1

3d′
+

d′

∑
i=2

(√
d′+d′i −2

d′d′i
−
√

(d′−1)+d′i −2
(d′−1)d′i

)

≤ ABC(G′)+
3√
2
+

√
d′+1

3d′

≤ ϕ(n−3,0)+
3√
2
+

√
d′+1

3d′
.
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64 Jianping Li
If n is odd, then n−3 is even and

ABC(G) ≤ ϕ(n−3,0)+
3√
2
+

√
d′+1

3d′

=
n−3−2

2
3√
2
+

1√
2
+

3√
2
+

√
d′+1

3d′

= ϕ(n,0)− 2√
2
+

√
d′+1

3d′

< ϕ(n,0),

a contradiction. If n is even, then n−3 is odd and

ABC(G) ≤ ϕ(n−3,0)+
3√
2
+

√
d′+1

3d′

=
n−3−1

2
3√
2
+

3√
2
+

√
d′+1

3d′

= ϕ(n,0)− 1√
2
+

√
d′+1

3d′

< ϕ(n,0),

a contradiction again. Suppose that dz = 2. Suppose that G contains a path P = x1x2x3x4

with dx2 = dx3 = 2. Let G′ = G− x3 + x2x4. Then G′ ∈ C(n− 1,0) and G′ contains the
triangle w1w2w3 with dw1 = dw2 = 2 and dw3 = 3. By the choice of G, we have ABC(G′)<
ϕ(n−1,0). By Lemma 5, we have ABC(G) = ABC(G′)+ 1√

2
<ϕ(n−1,0)+ 1√

2
≤ϕ(n,0).

Hence ABC(G) < ϕ(n,0), a contradiction. Thus G does not contain a path P = x1x2x3x4

with dx2 = dx3 = 2. Thus both neighbors of z are of degree at least 3. Consider the graph
G′ = G−{w1,w2,w3,z} which is in C(n− 4,0). As above, we may finally have a
contradiction. �

Theorem 3 Let G ∈ C(n,k), where 0≤ k ≤ n−1. Then

ABC(G)≤





√
(n−1)(n−2) if k = n−1,

√
2+(n−3)

√
n−3
n−2

if k = n−2,

ϕ(n,k) if k ≤ n−3,
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On the ABC index of cacti 65
with equality if and only if G ∼= Sn for k = n− 1, G ∼= S(2,n− 2) for k = n− 2, and G ∼=
H0(n,k) for k ≤ n− 3, where S(2,n− 2) is the graph obtained by joining a vertex to one
pendent vertex of the star Sn−1.

Proof. The case k = n−1 is obvious since in this case G∼= Sn.
Suppose k = n−2. Then n≥ 4, and G is a tree with diameter three, which is obtainable

from a path with two vertices by attaching a pendent vertices to one end vertex and b
pendent vertices to the other end vertex, where a+ b = n− 2 and a ≤ b. If a = 1, then

G∼= S(2,n−2) and ABC(G) =
√

2+(n−3)
√

n−3
n−2 = f (2,n−2). If a≥ 2, then ABC(G) =

a
√

a
a+1 +

√
a+b

(a+1)(b+1) +b
√

b
b+1 = f (a+1,b+1)< f (2,n−2).

Now suppose 0 ≤ k ≤ n−3. We prove the result by induction on k. If k = 0, then the
result is true by Lemma 7.

Suppose that k ≥ 1 and the result holds for cacti with at most k− 1 pendent vertices.
Let G ∈ C(n,k) and uv ∈ E(G) with du = 1. Let N(v) = {u,v1,v2, . . . ,vd−1}, where d = dv.
Obviously, d ≥ 2. Suppose without loss of generality that dv1 = dv2 = · · ·= dvp−1 = 1 and
dvi ≥ 2 for p ≤ i ≤ d−1, where p ≥ 1. Denote dvi = di for p ≤ i ≤ d−1. Then set G′ =
G−u− v1− v2−·· ·− vp−1 (if p = 1, then G′ = G−u). Obviously, G′ ∈ C(n− p,k− p).
Note that (n− p)− (k− p) and n− k have the same parity. By the induction assumption
and Lemma 3, we have

ABC(G) = ABC(G′)+ p

√
d−1

d
+

d−1

∑
i=p

(√
d +di−2

ddi
−
√

(d− p)+di−2
(d− p)di

)

≤ ϕ(n− p,k− p)+ p

√
d−1

d
,

with equality if and only if G′ ∼= H0(n− p,k− p). If n− k is odd, then

ABC(G) ≤ ϕ(n− p,k− p)+ p

√
d−1

d

=
n− k−1

2
3√
2
+(k− p)

√
n− p−2
n− p−1

+ p

√
d−1

d

= ϕ(n,k)+(k− p)
(√

n− p−2
n− p−1

−
√

n−2
n−1

)
+ p
(√

d−1
d
−
√

n−2
n−1

)

≤ ϕ(n,k),
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66 Jianping Li
with equalities if and only if G′ ∼= H0(n− p,k− p), d = n−1, and k = p, i.e., G∼= H0(n,k).
If n− k is even, then

ABC(G) ≤ ϕ(n− p,k− p)+ p

√
d−1

d

=
n− k−2

2
3√
2
+

1√
2
+(k− p)

√
n− p−3
n− p−2

+ p

√
d−1

d

= ϕ(n,k)+(k− p)
(√

n− p−3
n− p−2

−
√

n−3
n−2

)
+ p
(√

d−1
d
−
√

n−3
n−2

)

≤ ϕ(n,k),

with equalities if and only if G′ ∼= H0(n− p,k− p), d = n−2, and k = p, i.e., G∼= H0(n,k).
�
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